Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(28): e2301115120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399418

RESUMO

Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Animais , Camundongos , Bactérias , Citrobacter , Infecções por Enterobacteriaceae/microbiologia , Mucosa Intestinal/microbiologia , Mamíferos , Monossacarídeos , Ácido N-Acetilneuramínico
2.
Ann Clin Microbiol Antimicrob ; 20(1): 83, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911528

RESUMO

BACKGROUND: Solid transplant patients are susceptible to Pneumocystis jirovecii pneumonia (PJP). While the vast majority of PJP cases occur within the first 6 months after transplantation, very few PJP cases are seen beyond 1 year post-transplantation (late-onset PJP). PJP and coronavirus disease 2019 (COVID-19, caused by infection with SARS-CoV-2) share quite a few common clinical manifestations and imaging findings, making the diagnosis of PJP often underappreciated during the current COVID-19 pandemic. To date, only 1 case of kidney transplantation who developed COVID-19 and late-onset PJP has been reported, but this patient also suffered from many other infections and died from respiratory failure and multiple organ dysfunction syndrome. A successful treatment of kidney patients with COVID-19 and late-onset PJP has not been reported. CASE PRESENTATION: We present a case of a 55-year-old male kidney transplant patient with COVID-19 who also developed late-onset PJP. He received a combined treatment strategy, including specific anti-pneumocystis therapy, symptomatic supportive therapy, adjusted immunosuppressive therapy, and use of antiviral drugs/antibiotics, ending with a favorable outcome. CONCLUSIONS: This case highlights the importance of prompt and differential diagnosis of PJP in kidney transplant patients with SARS-CoV-2 infection. Further studies are required to clarify if kidney transplant patients with COVID-19 could be prone to develop late-onset PJP and how these patients should be treated.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Transplante de Rim , Pneumonia por Pneumocystis , COVID-19/complicações , Humanos , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-Idade , Pneumonia por Pneumocystis/diagnóstico , Pneumonia por Pneumocystis/tratamento farmacológico
3.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625492

RESUMO

Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Linfócitos/imunologia , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Células Dendríticas/imunologia , Microbioma Gastrointestinal/imunologia , Interleucinas/análise , Tecido Linfoide/citologia , Tecido Linfoide/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR/biossíntese , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Tretinoína/metabolismo , Peptídeo Intestinal Vasoativo/genética
4.
Front Cell Infect Microbiol ; 11: 650163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816355

RESUMO

Background: The prompt diagnosis of pulmonary tuberculosis (PTB) remains a challenge in clinical practice. The present study aimed to optimize an algorithm for rapid diagnosis of PTB in a real-world setting. Methods: 28,171 adult inpatients suspected of having PTB in China were retrospectively analyzed. Bronchoalveolar lavage fluid (BALF) and/or sputum were used for acid-fast bacilli (AFB) smear, Xpert MTB/RIF (Xpert), and culture. A positive mycobacterial culture was used as the reference standard. Peripheral blood mononuclear cells (PBMC) were used for T-SPOT.TB. We analyzed specimen types' effect on these assays' performance, determined the number of smears for diagnosing PTB, and evaluated the ability of these assays performed alone, or in combination, to diagnose PTB and nontuberculous mycobacteria (NTM) infections. Results: Sputum and BALF showed moderate to substantial consistency when they were used for AFB smear or Xpert, with a higher positive detection rate by BALF. 3-4 smears had a higher sensitivity than 1-2 smears. Moreover, simultaneous combination of AFB and Xpert correctly identified 44/51 of AFB+/Xpert+ and 6/7 of AFB+/Xpert- cases as PTB and NTM, respectively. Lastly, when combined with AFB/Xpert sequentially, T-SPOT showed limited roles in patients that were either AFB+ or Xpert+. However, T-SPOTMDC (manufacturer-defined cut-off) showed a high negative predicative value (99.1%) and suboptimal sensitivity (74.4%), and TBAg/PHA (ratio of Mycobacterium tuberculosis-specific antigens to phytohaemagglutinin spot-forming cells, which is a modified method calculating T-SPOT.TB assay results) ≥0.3 demonstrated a high specificity (95.7%) and a relatively low sensitivity (16.3%) in AFB-/Xpert- patients. Conclusions: Concurrently performing AFB smear (at least 3 smears) and Xpert on sputum and/or BALF could aid in rapid diagnosis of PTB and NTM infections in a real-world high-burden setting. If available, BALF is preferred for both AFB smear and Xpert. Expanding this algorithm, PBMC T-SPOTMDC and TBAg/PHA ratios have a supplementary role for PTB diagnosis in AFB-/Xpert- patients (moderately ruling out PTB and ruling in PTB, respectively). Our findings may also inform policy makers' decisions regarding prevention and control of TB in a high burden setting.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Adulto , Algoritmos , Big Data , China , Humanos , Leucócitos Mononucleares , Estudos Retrospectivos , Sensibilidade e Especificidade , Escarro
5.
Gut Microbes ; 12(1): 1847976, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33258388

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory condition linked to intestinal microbial dysbiosis, including the expansion of E. coli strains related to extra-intestinal pathogenic E. coli. These "pathobionts" exhibit pathogenic properties, but their potential to promote UC is unclear due to the lack of relevant animal models. Here, we established a mouse model using a representative UC pathobiont strain (p19A), and mice lacking single immunoglobulin and toll-interleukin 1 receptor domain (SIGIRR), a deficiency increasing susceptibility to gut infections. Strain p19A was found to adhere to the cecal mucosa of Sigirr -/- mice, causing modest inflammation. Moreover, it dramatically worsened dextran sodium sulfate-induced colitis. This potentiation was attenuated using a p19A strain lacking α-hemolysin genes, or when we targeted pathobiont adherence using a p19A strain lacking the adhesin FimH, or following treatment with FimH antagonists. Thus, UC pathobionts adhere to the intestinal mucosa, and worsen the course of colitis in susceptible hosts.


Assuntos
Colite Ulcerativa/genética , Colite Ulcerativa/microbiologia , Escherichia coli/crescimento & desenvolvimento , Microbioma Gastrointestinal , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Animais , Colite Ulcerativa/imunologia , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Predisposição Genética para Doença , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia
6.
Front Med (Lausanne) ; 7: 549860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33043036

RESUMO

One of the primary tools for diagnosing COVID-19 is the nucleic acid-based real-time reverse transcriptase-polymerase chain reaction (RT-PCR) test performed on respiratory specimens. The detection rate of SARS-CoV-2 in lower respiratory specimens (such as sputum) is higher than that for upper respiratory specimens (such as nasal and pharyngeal swabs). However, sputum specimens are usually quite viscous, requiring a homogenization process prior to nucleic acid (NA) extraction for RT-PCR. Sputum specimens from COVID-19 and non-COVID-19 patients were treated with four commonly used reagents-saline, N-acetyl-L-cysteine (NALC), proteinase K (PK), and dithiothreitol (DTT), prior to NA extraction. These reagents were then compared for their performance in diagnosing COVID-19 in real clinical practice. The detection rate of SARS-CoV-2 in PK- or DTT-treated sputum was comparable, and higher than that in sputum treated with NALC or saline. While there was a 4.8% (1/21) false negative rate for the PK- and DTT-treated sputum, neither treatment showed any false positive cases among patients with non-COVID diseases. Moreover, sputum pretreated with saline, NALC, PK or DTT showed higher detection rates of SARS-CoV-2 as compared to pharyngeal swabs. Taken together, we provide direct evidence recommending the use of PK or DTT to pretreat sputum samples to facilitate SARS-CoV-2 detection by clinical laboratories. Moreover, our methods should help to standardize the procedure of processing sputum specimens and improve the ability to detect SARS-CoV-2 in these samples.

7.
Cell Microbiol ; 21(10): e13076, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31254473

RESUMO

Pseudomonas aeruginosa, an opportunistic life-threatening human bacterial pathogen, employs quorum-sensing (QS) signal molecules to modulate virulence gene expression. 2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde (IQS) is a recently identified QS signal that integrates the canonical lasR-type QS of P. aeruginosa and host phosphate stress response to fine-tune its virulence production for a successful infection. To address the role of IQS in pathogen-host interaction, we here present that IQS inhibits host cell growth and stimulates apoptosis in a dosage-dependent manner. By downregulating the telomere-protecting protein POT1 in host cells, IQS activates CHK1, CHK2, and p53 in an Ataxia telangiectasia mutated (ATM)/ATM and RAD3-related (ATR)-dependent manner and induces DNA damage response. Overexpression of POT1 in host cells presents a resistance to IQS treatment. These results suggest a pivotal role of IQS in host apoptosis, highlighting the complexity of pathogenesis mechanisms developed by P. aeruginosa during infection.


Assuntos
Apoptose/efeitos dos fármacos , Fenóis/farmacologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Proteínas de Ligação a Telômeros/metabolismo , Tiazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Animais , Apoptose/genética , Proteínas de Bactérias/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Humanos , Camundongos , Fenóis/química , Proteólise , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/química , Percepção de Quorum , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Tiazóis/química , Proteína Supressora de Tumor p53/genética , Virulência/genética
8.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770403

RESUMO

The type III secretion system (T3SS) is one of the most important virulence factors of the fish pathogen Edwardsiella piscicida It contains three translocon proteins, EseB, EseC, and EseD, required for translocation of effector proteins into host cells. We have previously shown that EseB forms filamentous appendages on the surface of E. piscicida, and these filamentous structures mediate bacterial cell-cell interactions promoting autoaggregation and biofilm formation. In the present study, we show that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida At 18 h postsubculture, a ΔeseC strain developed strong autoaggregation and mature biofilm formation, accompanied by enhanced formation of EseB filamentous appendages. This is in contrast to the weak autoaggregation and immature biofilm formation seen in the E. piscicida wild-type strain. EseE, a protein that directly binds to EseC and also positively regulates the transcription of the escC-eseE operon, was liberated and showed increased levels in the absence of EseC. This led to augmented transcription of the escC-eseE operon, thereby increasing the steady-state protein levels of intracellular EseB, EseD, and EseE, as well as biofilm formation. Notably, the levels of intracellular EseB and EseD produced by the ΔeseE and ΔeseC ΔeseE strains were similar but remarkably lower than those produced by the wild-type strain at 18 h postsubculture. Taken together, we have shown that the translocon protein EseC inhibits biofilm formation through sequestering EseE, a positive regulator of the escC-eseE operon.IMPORTANCEEdwardsiella piscicida, previously known as Edwardsiella tarda, is a Gram-negative intracellular pathogen that mainly infects fish. The type III secretion system (T3SS) plays a pivotal role in its pathogenesis. The T3SS translocon protein EseB is required for the assembly of filamentous appendages on the surface of E. piscicida The interactions between the appendages facilitate autoaggregation and biofilm formation. In this study, we explored the role of the other two translocon proteins, EseC and EseD, in biofilm formation. We have demonstrated that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida, providing new insights into the regulatory mechanism involved in E. piscicida biofilm formation.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Biofilmes/efeitos dos fármacos , Edwardsiella/efeitos dos fármacos , Sistemas de Secreção Tipo III/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Cálcio , Edwardsiella/genética , Doenças dos Peixes/microbiologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Glicoproteínas de Membrana , Óperon/genética , Receptores Citoplasmáticos e Nucleares , Receptores de Peptídeos , Fatores de Virulência/metabolismo
9.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630070

RESUMO

The type III secretion system (T3SS) plays a crucial role in the pathogenesis of many Gram-negative bacteria, including Edwardsiella tarda, an important fish pathogen. Within the E. tarda T3SS, there are three proteins (EsaB/EsaL/EsaM) that are homologous to proteins present in many other bacteria, including SpiC/SsaL/SsaM in Salmonella, SepD/SepL/CesL in enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC), and YscB/YopN/SycN in Yersinia EsaL was found to interact with both EsaB and EsaM within the bacterial cell, as revealed by a coimmunoprecipitation assay. Moreover, EsaM is required for EsaB stability, and the two proteins interact with each other. EsaB, EsaL, and EsaM are all indispensable for the secretion of the T3SS translocon protein EseC into supernatants under pH 5.5 and pH 7.2 conditions. Unlike EseC, EseG is a T3SS effector whose secretion is suppressed by EsaL at pH 7.2 while it is promoted at pH 5.5 condition. Despite this finding, mutant strains lacking EsaB, EsaL, or EsaM (i.e., the ΔesaB, ΔesaL, or ΔesaM strain, respectively) were all outcompeted by wild-type E. tarda during a coinfection model. These results demonstrate that EsaB/EsaL/EsaM form a ternary complex controlling the secretion of T3SS translocon and effector proteins and contributing to E. tarda pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Edwardsiella tarda/metabolismo , Regulação da Expressão Gênica , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Peixes , Deleção de Genes , Macrófagos/microbiologia , Camundongos , Ligação Proteica , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Transporte Proteico
10.
Infect Immun ; 84(8): 2336-2344, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271743

RESUMO

Edwardsiella tarda is an important Gram-negative pathogen that employs a type III secretion system (T3SS) to deliver effectors into host cells to facilitate bacterial survival and replication. These effectors are translocated into host cells through a translocon complex composed of three secreted proteins, namely, EseB, EseC, and EseD. The secretion of EseB and EseD requires a chaperone protein called EscC, whereas the secretion of EseC requires the chaperone EscA. In this study, we identified a novel protein (EseE) that also regulates the secretion of EseC. An eseE deletion mutant secreted much less EseC into supernatants, accompanied by increased EseC levels within bacterial cells. We also demonstrated that EseE interacted directly with EseC in a pulldown assay. Interestingly, EseC, EseE, and EscA were able to form a ternary complex, as revealed by pulldown and gel filtration assays. Of particular importance, the deletion of eseE resulted in decreased levels of EseB and EseD proteins in both the bacterial pellet and supernatant fraction. Furthermore, real-time PCR assays showed that EseE positively regulated the transcription of the translocon operon escC-eseE, comprising escC, eseB, escA, eseC, eseD, and eseE These effects of EseE on the translocon components/operon appeared to have a functional consequence, since the ΔeseE strain was outcompeted by wild-type E. tarda in a mixed infection in blue gourami fish. Collectively, our results demonstrate that EseE not only functions as a chaperone for EseC but also acts as a positive regulator controlling the expression of the translocon operon escC-eseE, thus contributing to the pathogenesis of E. tarda in fish.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Edwardsiella tarda/fisiologia , Óperon , Animais , Proteínas de Bactérias/química , Infecções por Enterobacteriaceae/microbiologia , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Ligação Proteica , Transporte Proteico , Análise de Sequência de DNA , Deleção de Sequência , Transcrição Gênica , Sistemas de Secreção Tipo III , Virulência/genética
11.
Nucleic Acids Res ; 43(2): 836-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25550437

RESUMO

The transcription factor NFATc2 regulates dendritic cell (DC) responses to microbial stimulation through the C-type lectin receptor dectin-1. But the genetic targets of NFATc2 and their effects on DC function remain largely unknown. Therefore we used ChIP-seq to conduct genome-wide mapping of NFATc2 target sites in dectin-1-activated DCs. By combining binding-site data with a comprehensive gene expression profile, we found that NFATc2 occupancy regulates the expression of a subset of dectin-1-activated genes. Surprisingly, NFATc2 targeted an extensive range of DC-derived cytokines and chemokines, including regulatory cytokines such as IL2, IL23a and IL12b. Furthermore, we demonstrated that NFATc2 binding is required to induce the histone 3 lysine 4 trimethylation (H3K4me3) epigenetic mark, which is associated with enhanced gene expression. Together, these data show that the transcription factor NFATc2 mediates epigenetic modification of DC cytokine and chemokine genes leading to activation of their expression.


Assuntos
Quimiocinas/genética , Citocinas/genética , Células Dendríticas/imunologia , Epigênese Genética , Lectinas Tipo C/metabolismo , Fatores de Transcrição NFATC/metabolismo , Ativação Transcricional , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Quimiocinas/biossíntese , Citocinas/biossíntese , Células Dendríticas/metabolismo , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sítio de Iniciação de Transcrição
12.
PLoS One ; 9(8): e104568, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111779

RESUMO

The transcription factor Zscan10 had been attributed a role as a pluripotency factor in embryonic stem cells based on its interaction with Oct4 and Sox2 in in vitro assays. Here we suggest a potential role of Zscan10 in controlling progenitor cell populations in vivo. Mice homozygous for a Zscan10 mutation exhibit reduced weight, mild hypoplasia in the spleen, heart and long bones and phenocopy an eye malformation previously described for Sox2 hypomorphs. Phenotypic abnormalities are supported by the nature of Zscan10 expression in midgestation embryos and adults suggesting a role for Zscan10 in either maintaining progenitor cell subpopulation or impacting on fate choice decisions thereof.


Assuntos
Pleiotropia Genética , Fatores de Transcrição/genética , Animais , Comportamento Animal , Peso Corporal/genética , Densidade Óssea/genética , Osso e Ossos/fisiologia , Códon de Iniciação/genética , Olho/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica/genética , Homozigoto , Masculino , Camundongos , Mutação , Tamanho do Órgão/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Gravidez , Desmame
13.
Huan Jing Ke Xue ; 34(3): 1101-6, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23745420

RESUMO

Sediments properties and phosphorus (P) adsorption capacities were compared among the samples of 0-5 cm and 5-15 cm layers from the ecological ditch vegetated with Cenetlla asiatica, Sparganium stoloniferum and a natural agricultural ditch with weeds. The results showed the 0-5 cm sediment vegetated with Cenetlla asiatica had higher concentrations of oxalate extracted Fe, Al and P than those vegetated with Sparganium stoloniferum or weeds. The parameters calculated from the Freudlich and Langmiur isotherms showed the equilibrium phosphate concentration (EPC0) ranged from 0.009 to 0.031 mg x L(-1). Cenetlla asiatica in the 0-5 cm layer had the maximum values of 352.2 L x kg(-1) and 562.7 mg x kg(-1) for Freundlich adsorption constant (K(f)) and Langmuir sorption maximum (S(max)), respectively, which proved it had the highest P adsorption capacity. The regression analysis showed P sorption parameters had significant relationship to oxalate-extracted Fe, clay content and DPS (P < 0.05). It was thus clear that aquatic plants influenced sediment properties and P adsorption capacity, and the practice of growing proper plants in ecological ditch could reduce the risk of P loss in non-point source pollution.


Assuntos
Sedimentos Geológicos/química , Fósforo/isolamento & purificação , Plantas/metabolismo , Poluentes Químicos da Água/isolamento & purificação , Poluentes da Água/análise , Adsorção , Biodegradação Ambiental , China , Ecossistema , Nitrogênio/análise , Fósforo/análise , Desenvolvimento Vegetal , Poluentes Químicos da Água/análise
14.
Blood ; 120(7): 1380-9, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22611159

RESUMO

The calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway mediates multiple adaptive T-cell functions, but recent studies have shown that calcineurin/NFAT signaling also contributes to innate immunity and regulates the homeostasis of innate cells. Myeloid cells, including granulocytes and dendritic cells, can promote inflammation, regulate adaptive immunity, and are essential mediators of early responses to pathogens. Microbial ligation of pattern-recognition receptors, such as TLR4, CD14, and dectin 1, is now known to induce the activation of calcineurin/NFAT signaling in myeloid cells, a finding that has provided new insights into the molecular pathways that regulate host protection. Inhibitors of calcineurin/NFAT binding, such as cyclosporine A and FK506, are broadly used in organ transplantation and can act as potent immunosuppressive drugs in a variety of different disorders. There is increasing evidence that these agents influence innate responses as well as inhibiting adaptive T-cell functions. This review focuses on the role of calcineurin/NFAT signaling in myeloid cells, which may contribute to the various unexplained effects of immunosuppressive drugs already being used in the clinic.


Assuntos
Imunidade Inata/imunologia , Fatores de Transcrição NFATC/imunologia , Animais , Calcineurina/metabolismo , Homeostase/imunologia , Humanos , Células Mieloides/imunologia , Transdução de Sinais/imunologia
15.
Genome Res ; 21(8): 1284-93, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21632747

RESUMO

The differentiation of pluripotent embryonic stem cells is regulated by networks of activating and repressing transcription factors that orchestrate determinate patterns of gene expression. With the recent mapping of target sites for many transcription factors, it has been a conundrum that so few of the genes directly targeted by these factors are transcriptionally responsive to the binding of that factor. To address this, we generated genome-wide maps of the transcriptional repressor REST and five of its corepressors in mouse embryonic stem cells. Combining these binding-site maps with comprehensive gene-expression profiling, we show that REST is functionally heterogeneous. Approximately half of its binding sites apparently are nonfunctional, having weaker binding of REST and low recruitment of corepressors. In contrast, the other sites strongly recruit REST and corepressor complexes with varying numbers of components. Strikingly, the latter sites account for almost all observed gene regulation. These data support a model where productive gene repression by REST requires assembly of a multimeric "repressosome" complex, whereas weak recruitment of REST and its cofactors is insufficient to repress gene expression.


Assuntos
Células-Tronco Embrionárias/citologia , Proteínas Repressoras/genética , Animais , Sítios de Ligação , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma , Camundongos , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 29(2): 179-82, 2011 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-21598494

RESUMO

OBJECTIVE: To investigate the significance of cytokine interleukin-12p40 (IL-12p40) and interferon-gamma (IFN-gamma) in tissues formation and development of human oral lichen planus (OLP). METHODS: The tissues of 11 cases of normal oral epithelium and 43 cases of OLP were investigated for the expression of IL-12p40 and IFN-gamma proteins by using Envision two-step immunohistochemistry. The correlations between the expressions of these two cytokines, and their clinical and pathological significance in OLP were analyzed. RESULTS: 1) IL-12p40 and IFN-gamma proteins were up-regulated in OLP comparing with that in normal oral mucosa and there was statistical significance between their difference (P < 0.05). 2) The percentage of positive IL-12p40 staining in OLP of IFN-gamma positive group was higher than IFN-gamma negative group and there was statistical significance between their difference (Chi2 = 5.828, P = 0.016). A positive correlation was found between IL-12p40 and IFN-gamma proteins in OLP (Spearman r = 0.357, P = 0.019). 3) The percentage of positive IL-12p40 staining in OLP with short course (< 6 months) was higher than that in OLP with long course (> 6 months; Chi2 = 7.935, P = 0.005), and a significant association was found between IFN-gamma over expression and the degeneration of base cells in OLP lesions (Chi2 = 9.070, P = 0.011). CONCLUSION: These results indicate that at the primary phase of OLP, IL-12 may drive the pathological destruction in OLP lesions by elevating IFN-gamma protein locally. IFN-gamma may play an important role for the pathological destruction in OLP lesions.


Assuntos
Interferon gama , Líquen Plano Bucal , Adulto , Feminino , Humanos , Interleucinas , Pessoa de Meia-Idade , Mucosa Bucal
17.
Infect Immun ; 78(12): 5011-21, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20855515

RESUMO

Edwardsiella tarda is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and both gastrointestinal and extraintestinal infections in humans. A type III secretion system (T3SS) was recently shown to contribute to pathogenesis, since deletions of various T3SS genes increased the 50% lethal dose (LD(50)) by about 1 log unit in the blue gourami infection model. In this study, we report EseG as the first identified effector protein of T3SS. EseG shares partial homology with two Salmonella T3SS effectors (SseG and SseF) over a conserved domain (amino acid residues 142 to 192). The secretion of EseG is dependent on a functional T3SS and, in particular, requires the chaperone EscB. Experiments using TEM-1 ß-lactamase as a fluorescence-based reporter showed that EseG was translocated into HeLa cells at 35°C. Fractionation of infected HeLa cells demonstrated that EseG was localized to the host membrane fraction after translocation. EseG is able to disassemble microtubule structures when overexpressed in mammalian cells. This phenotype may require a conserved motif of EseG (EseG(142-192)), since truncated versions of EseG devoid of this motif lose their ability to cause microtubule destabilization. By demonstrating the function of EseG, our study contributes to the understanding of E. tarda pathogenesis. Moreover, the approach established in this study to identify type III effectors can be used to identify and characterize more type III and possible type VI effectors in Edwardsiella.


Assuntos
Proteínas de Bactérias/fisiologia , Sistemas de Secreção Bacterianos/fisiologia , Edwardsiella tarda/fisiologia , Microtúbulos/microbiologia , Animais , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Translocação Bacteriana/fisiologia , Western Blotting , Edwardsiella tarda/genética , Edwardsiella tarda/patogenicidade , Infecções por Enterobacteriaceae/microbiologia , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência , Perciformes/microbiologia , Salmonella typhimurium/genética , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Tubulina (Proteína)/metabolismo
18.
J Biol Chem ; 284(52): 36007-36011, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19850933

RESUMO

Innate defense regulator-1 (IDR-1) is a synthetic peptide with no antimicrobial activity that enhances microbial infection control while suppressing inflammation. Previously, the effects of IDR-1 were postulated to impact several regulatory pathways including mitogen-activated protein kinase (MAPK) p38 and CCAAT-enhancer-binding protein, but how this was mediated was unknown. Using a combined stable isotope labeling by amino acids in cell culture-proteomics methodology, we identified the cytoplasmic scaffold protein p62 as the molecular target of IDR-1. Direct IDR-1 binding to p62 was confirmed by several biochemical binding experiments, and the p62 ZZ-type zinc finger domain was identified as the IDR-1 binding site. Co-immunoprecipitation analysis of p62 molecular complexes demonstrated that IDR-1 enhanced the tumor necrosis factor alpha-induced p62 receptor-interacting protein 1 (RIP1) complex formation but did not affect tumor necrosis factor alpha-induced p62-protein kinase zeta complex formation. In addition, IDR-1 induced p38 MAPK activity in a p62-dependent manner and increased CCAAT-enhancer-binding protein beta activity, whereas NF-kappaB activity was unaffected. Collectively, these results demonstrate that IDR-1 binding to p62 specifically affects protein-protein interactions and subsequent downstream events. Our results implicate p62 in the molecular mechanisms governing innate immunity and identify p62 as a potential therapeutic target in both infectious and inflammatory diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas de Choque Térmico/imunologia , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Proteínas Estimuladoras de Ligação a CCAAT/imunologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Imunidade Inata/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ligação Proteica/imunologia , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Proteína Sequestossoma-1 , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
J Biol Chem ; 284(45): 31327-35, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19740739

RESUMO

Zfp206 (recently renamed Zscan10) encodes a zinc finger transcription factor specifically expressed in human and mouse embryonic stem cells (ESC). It has been shown that Zfp206 is required to maintain ESC in an undifferentiated, pluripotent state. Presented here are data showing that Zfp206 works together with two other transcription factors, Oct4 and Sox2, which are also essential regulators of ESC pluripotency. We show that Zfp206 binds to the Oct4 promoter and directly regulates Oct4 expression. Genome-wide mapping of Zfp206-binding sites in ESC identifies more than 3000 target genes, many of which encode transcription factors that are also targeted for regulation by Oct4 and Sox2. In addition, we show that Zfp206 physically interacts with both Oct4 and Sox2. These data demonstrate that Zfp206 is a key component of the core transcriptional regulatory network and together with Oct4 and Sox2 regulates differentiation of ESC.


Assuntos
Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Camundongos , Fator 3 de Transcrição de Octâmero/química , Fator 3 de Transcrição de Octâmero/genética , Ligação Proteica , Fatores de Transcrição SOXB1/química , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
20.
Protein Sci ; 18(8): 1724-34, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19530229

RESUMO

In the type III secretion system (T3SS) of Aeromonas hydrophila, AcrH acts as a chaperone for translocators AopB and AopD. AcrH forms a stable 1:1 monomeric complex with AopD, whereas the 1:1 AcrH-AopB complex exists mainly as a metastable oligomeric form and only in minor amounts as a stable monomeric form. Limited protease digestion shows that these complexes contain highly exposed regions, thus allowing mapping of intact functional chaperone binding regions of AopB and AopD. AopD uses the transmembrane domain (DF1, residues 16-147) and the C-terminal amphipathic helical domain (DF2, residues 242-296) whereas AopB uses a discrete region containing the transmembrane domain and the putative N-terminal coiled coil domain (BF1, residues 33-264). Oligomerization of the AcrH-AopB complex is mainly through the C-terminal coiled coil domain of AopB, which is dispensable for chaperone binding. The three proteins, AcrH, AopB, and AopD, can be coexpressed to form an oligomeric and metastable complex. These three proteins are also oligomerized mainly through the C-terminal domain of AopB. Formation of such an oligomeric and metastable complex may be important for the proper formation of translocon of correct topology and stoichiometry on the host membrane.


Assuntos
Aeromonas hydrophila/metabolismo , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Chaperonas Moleculares/química , Chaperonas Moleculares/isolamento & purificação , Ligação Proteica/fisiologia , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...